Permeation of the luminal capillary glycocalyx is determined by hyaluronan.

نویسندگان

  • Charmaine B S Henry
  • Brian R Duling
چکیده

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycocalyx perturbation: cause or consequence of damage to the vasculature?

EARLY ELECTRON MICROSCOPIC observations identified an extracellular coating of anionic polysaccharides on the luminal surface of vascular endothelial cells. This coating was named glycocalyx by Bennet (2) in 1962 and was hypothesized to contribute to the transport properties of the capillary wall. Experimental data to support a physiological role for the endothelial glycocalyx remained lacking ...

متن کامل

Microvascular and capillary perfusion following glycocalyx degradation.

Systemic parameters and microvascular and capillary hemodynamics were studied in the hamster window chamber model before and after hyaluronan degradation by intravenous injection of Streptomyces hyaluronidase (100 units, 40-50 U/ml plasma). Glycocalyx permeation was estimated using fluorescent markers of different molecular size (40, 70, and 2,000 kDa), and electrical charge. Systemic parameter...

متن کامل

Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx.

The endothelial glycocalyx is believed to play a major role in capillary permeability by functioning as a macromolecular barrier overlying the intercellular junction. Little is known about the functional attributes of the glycocalyx (i.e., porosity and permeability) or which constituents contribute to its overall structure-function relationship. In this report, we demonstrate the utility of flu...

متن کامل

Impact of Enzymatic Degradation of the Endothelial Glycocalyx on Vascular Permeability in an Awake Hamster Model

Background. The inside of the endothelium is covered by a glycocalyx layer, and enzymatic degradation of this layer induces vascular leakage ex vivo. We hypothesized that enzymatic degrading of the glycocalyx in an in vivo, whole body model, would induce plasma leakage and affect the microcirculation. Methods. Golden Syrian hamsters were divided into an enzyme (hyaluronidase) and a control grou...

متن کامل

Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx.

Vascular endothelial cells are shielded from direct exposure to flowing blood by the endothelial glycocalyx, a highly hydrated mesh of glycoproteins, sulfated proteoglycans, and associated glycosaminoglycans (GAGs). Recent data indicate that the incorporation of the unsulfated GAG hyaluronan into the endothelial glycocalyx is essential to maintain its permeability barrier properties, and we hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999